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Abstract

This paper presents a reliable algorithm for the evaluation of a quadratic perfor-
mance index and its gradients with respect to the controller design parameters. The
algorithm is part of a design algorithm for optimal linear dynamic output-feedback
controller that minimizes a finite-time quadratic performance index. The numerical
scheme is particularly robust when it is applied to the control-law synthesis for sys-
tems with densely packed modes and where there is a high likelihood of encountering
degeneracies in the closed-loop eigensystem. This approach through the use of an ac-
curate Padé series approximation does not require the closed-loop system matrix to
be diagonalizable. The algorithm has been included in a control design package for
optimal robust low-order controllers. Usefulness of the proposed numerical algorithm
has been demonstrated using numerous practical design cases where degeneracies occur
frequently in the closed-loop system under an arbitrary controller design initialization

and during the numerical search.

1. Introduction

Traditional design methods in linear optimal control for continuous-time systems have been
extensively treated in recent literature (1]. Development of these control systems are usually
based on characterization of the control problem under the setting of optimization of the
two-norm of a set of controlled output responses to random disturbance inputs or initial con-
ditions. Additional consideration of design robustness is taken by formulating the problem to
include H®-norm bound constraints for a class of additive and multiplicative uncertainties
applied at the plant inputs and/or outputs. Solutions are obtained for both the state- and
output-feedback design problems and involve in the majority of cases solving an appropriate
set of algebraic Riccati equations (2,3). Theoretical studies of these approaches have been

*The work of B. VanSteenwyk and U. Ly is supported in part by NASA Ames Research Center under
grant contract NAG-2-691.



the major concern of researchers in the control field and major breakthrough has been made
in recent work by Stoorvogel [4,5]. An alternate and seldomly mentioned design option for
robust multivariable control of linear time-invariant systems is based on direct numerical
optimization of a quadratic performance index with an arbitrarily specified controller struc-
ture. We believe that careful formulation of the design problem under nonlinear constrained
optimization can be of great value in the synthesis of robust multivariable control systems.

Early work in this area have been published by Levine and Athans (6], Anderson and
Moore [7], and extensive review of the subject was performed by Makila [8]. Recently, a
new look into parameter optimization to multivariable control synthesis is provided by Ly
[9] where he used a quadratic performance based on finite-time horizon. In the latter work, a
numerical optimization technique based on [10] was used. At each design iteration it requires
a precise evaluation of a finite-time quadratic performance index and its gradients with
respect to the design parameters. Analytical expressions have been developed to evaluate
these quantities under the key assumption that the closed-loop system being diagonalizable.
This assumption is found to be unsatisfactory and is the cause of convergence difficulties in
the iterative search when it attempts to invert an ill-conditionned eigenvector matrix for the
diagonalization. The work presented in this paper is to resolve this numerical difficulty and
thereby extends the results of Ly [9] for cases where the closed-loop systems are degenerate,
i.e the closed-loop system has repeated eigenvalues and the corresponding set of system
eigenvectors does not span the whole state-space of the closed-loop system.

The paper is organized as follows. Section 2 reviews the problem formulation for a linear
optimal control design using direct parameter optimization. Analytical expressions for the
evaluation of the quadratic cost function and its gradients with respect to the controller
design parameters are also given in section 2. The current approach to evaluate these quan-
tities are briefly reviewed in section 3. An alternate numerical scheme for the exponential
matrix and convolution integrals involving exponential matrices Is presented in section 4.
Approximation methods for the evaluation of these matrix quantities using Padé series are
described in details in sections 5, 6, and 7. A design algorithm based on these numerical
solution schemes has been incorporated into a computer-aided design package described in
[9]. A simple design problem to motivate the need for a numerical algorithm that handles
degeneracies in the closed-loop system matrix is given in section 8. Optimal solutions are ob-
tained using the proposed method and the diagonalization method from [9]. The numerical
algorithm has also been applied to the synthesis of an active control system for the JPL large
space structure developed under the LSCL research program [16]. Results of this application
are presented in section 9. Conclusions are given in section 10.

2. Problem Formulation

In this section, we recall the problem formulation described in Ly [9] for the control synthesis
of a robust low-order controller in a linear time-invariant system. The system Pi(s) is
controlled by a constant-gain controller C'(s) as depicted in Figure 1 where y'(s) is the
controlled output vector, y'(s) the measurement output vector, w'(s) the disturbance input
vector and u'(s) the control input vector. As a consistent notation, the superscript ¢ is used
throughout this paper to denote the system model at the :** plant condition. Note that the
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controller C(s) is considered to be fized, i.e does not vary with the design condition. It is
modelled as a linear time-invariant system of arbitrary order whose formulation accomodates
both a feedforward and a feedback controller structures. Robustness requirement in the
context of our problem formulation is defined under the conditions that the control system
C(s) stabilizes the plant Pi(s) over a class of design conditions (¢ =1, N,).

State equations describing the system model Pi(s) of Figure 1 are as follows. Notice
that, in the problem formulation, we assume without loss of generalities that all the system
states are initially acquiescent. This assumption is not restrictive since one can always
establish impulsive inputs w'(t) together with the appropriate influence matrix to represent
any state initial conditions. At the i™* plant condition, the system design model is described
by equations (1)-(3) below.

State Equations: . . o o

$i(t) = Fia'(t) + G'ui(t) + TMw'(¢)
(o= 1)
z(0) =10
where z'(t) is a n x 1 plant state vector, u'(t) an m x 1 control vector, wi(t) an m’ x 1
disturbance-input vector, F' an n x n state matrix, G* an n x m control distribution matrix
and I an n x m’ input-disturbance distribution matrix.
Measurement Equations:

yi(t) = Hizi(t) + Diu'(t) + Diw'(t) (2)

where y'(t) is a p x 1 measurement vector, H: a p x n state-to-measurement distribution
matrix, D!, a p x m control-to-measurement distribution matrix and D! a p x m’ input-
disturbance-to-measurement distribution matrix.

Criterion Equations:

yi(t) = Hix'(t) + D' (8) + Diw'(t) (3)

cu

where yi(1) is a p’ x 1 criterion vector, H! a p' x n state-to-criterion distribution matrix,
Di. ap x m control-to-criterion distribution matrix and D! ap x m'input-disturbance-
to-criterion distribution matrix.

For generality, the disturbances w(t) are modeled as outputs of a linear time-invariant
system excited by either impulse inputs or white noises. In this manner, one can shape the
disturbance signals to have any deterministic responses (e.g filtered step functions, sinusoidal
functions, exponentially decayed or growing sinusoidal functions, etc...) or to model stochas-
tic inputs with any given power spectral density functions. At the i plant condition, the
disturbance model is given by equations (4)-(5) below.

Disturbance State Equations:

(3500 = Rkl + () “
£,(0) =0
where % (t) is a n’ x 1 disturbance state vector, ni(t) am’x 1 vector of either parameterized
random impulses (i.e 7°(t) = 7:6(t) with E[n}] = 0, and ElniniT] = W,), or white-noise
processes 7'(t) with zero mean and covariance El[pi ()T (r)] = W,6(t — 7). The matrix W,

is an m’ x m' diagonal positive semi-definite matrix. F* an n’ x n’ state matrix of the

w

disturbance model and T an n’ x m’ input-distribution matrix.

3



Disturbance Output Equations:

wi(t) = Hiel(t) + Dl (1) (5)
where w'(t) is a m’ x 1 disturbance output vector, Hi an m’ x n' disturbance output matrix
and Di an m’ x m’ direct feedthrough distribution matrix.

State model of the controller C(s) in Figure 1 is that of a linear time-invariant system
described by equations (6)-(7) below.

Controller State Equations:

:(t) = Az(t) + Byi(t)
{2(0) =0 (6)

where z(t) is a r x 1 controller state vector, A ar x r state matrix of the controller and B
ar x p measurement-input distribution matrix.

Control Equations:
w'(t) = Cz(t) + Dy,(t) (7)

where u'(t) is an m x 1 feedback control vector, C an m x r control-output distribution
matrix and D an m x p direct feedthrough matrix.

For control-law synthesis, all the elements of the controller state matrices can be chosen
as design parameters and some of them can be left fixed at pre-assigned values. In addi-
tion, if needed, linear and nonlinear equality or inequality constraints can be established
among the selected design parameters in order to ensure a particular design structure. For
convenience in the derivation of the performance index and its gradients with respect to
the controller design parameters, we define a matrix C, that groups all the controller state
matrices (A, B, C, D) in one compact form as follows,

D C

=[5 4l (8)
B A (m+7)x (p+7)

Thus, specification of the matrix C, will completely define the controller state model. Ob-
viously, for the case of a static output-feedback design (i.e the controller order r = 0), we
simply have C, = D. In Section 8, we will formulate a control design problem based on the
minimization of a performance index using the controller C(s) defined in equations (6)-(7).

To examine the entire class of H2-norm based control problems and to handle the prob-
lem of sensitivity to plant modeling uncertainties, we define the objective function given in
equations (9) and (10). This formulation turns out to be versatile and well-posed for the
setting of a nonlinear constrained optimization problem. However, depending on the types
of disturbance model, that is whether the disturbance outputs w'(t) are responses to impulse
or white-noise inputs, different definitions for the objective function are needed. They are
given below.

(a) For random impulse inputs pi(t):

Ny _ ;
J(tj) — %Z{L ; (fl 20"t
i=1
E [ yiT(t)Qi‘g/i(t) + uiT(t)Riiti(t) ] dt}
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The expectation operator E[~] is over the ensemble of the random variables n! in the param-
eterized impulse inputs n'(t) = n;6(t). Control design problems formulated with the above
performance index J(t;) are often classified under the category of deterministic control.
Under this category are, for example, the familiar control problems of command tracking
control, disturbance rejection of unwanted but known external input signals, implicit and ex-
plicit model-following designs, H?-control to initial conditions and H>-control to sinusoidal
inputs.
(b) For random white-noise inputs n'(t):

1= y () Q it )+
J(tf) - §;WPEO' uiT(if)Riui(tf) 1o

The expectation operator E,:[—] is over the ensemble of the random processes defined in the
input variables *(t) for a closed-loop system destabilized by a factor o'. The destabilization
effectively adds a value o' to the diagonal elements of the closed-loop system matrix. With
the given performance index, one can address the entire class of H%mnorm based control
design problems. For example, we can solve for the linear quadratic regulator design (LQ),
linear quadratic gaussian (LQG) design, loop transfer recovery (LTR),closed-loop transfer
recovery (CLTR), model reduction based on a minimization of H%-norm of the error.

Note that the performance indices given in equations (9) and (10) are evaluated to a
finite-time horizon t;. The use of a finite time plays a significant role in the implementation
of a reliable design algorithm for the optimum steady-state solution. It should be recognized
that the objective function is well-defined regardless of whether the feedback control-law
is stabilizing or not. Furthermore, a class of problems associated with command tracking
of neutrally stable or unstable target responses (e.g step and ramp commands, sinusoidal
trajectories) are only tractable under the setting of a finite-time objective function but not
in the confine of a steady-state objective function where t; — oo. In practice, steady-state
results, whenever possible, are usually achieved when the terminal time ¢; is equal to five or
six times the slowest time constant in the closed-loop system responses.

There are other unique features, besides the concept of design to a finite terminal time ¢,
that we have incorporated into the design objective function of equations (9)-(10). First of
all, this objective function is not the usual quadratic cost function defined in traditional lincar
optimal control problems. It is instead a weighted average of quadratic performance indices
evaluated over the entire set of design conditions (¢ = 1, N,). Different weights are assigned
to each plant condition through the scalar variable M/lf where I/sz > (0. Of course, if N, =1,
then we recover the usual quadratic cost function for a single nominal design condition.
The time-weighted factor e2't further allows us to impose directly a stability requirement
for the closed-loop eigenvalues. Namely, when a steady-state design has been achieved and
the optimum objective function is bounded, then closed-loop system eigenvalues for the
controllable modes will have real parts less than —a’. Finally, the weighting matrices (' and
R’ are symumetric and positive semi-definite matrices. Note that our solution approach to the
minimization of the objective function J(¢;) based on nonlinear optimization does not require
the control weighting matrix R' to be positive definite. In fact, in some design problems
such as command tracking and model reduction, an objective function representing simply
the tracking or model-matching errors does not include the control term, hence R = 0.



In this section, we provide analytical expressions for the evaluation of the objective
function J(t;) and its gradients 8J/AC, with respect to the controller matrix C,. Details of
the derivation can be found in [9]. For simple technicality, the problem formulation assumes
that there is no implicit-loop paths within the feedback control system. Namely, the control
input u‘(t) or the measurement output yi(t) should not have any direct link to itself. This
translates into the conditions that one of the product DD?, or Dt D must be zero. This is not
restrictive since in practice either actuation or sensor dynamics would be incorporated into
the design models and thereby resulting in a system that satisfies the above assumption; or
one can simply reformulate an equivalent problem with a set of measurement outputs where
D!, = 0. Let’s assume without loss of generality that we have the case of DD}, = 0, then

the closed-loop system can be written in the form [9] shown in figure 2 or simply,

i(t) = Fa'(t) + Ty'(t) with 2"(0) = 0 (11)
where '
[F!‘](n+r+n')x(n+r+n’) =
[ G'C (I'+ ]
G'DH: G'DD: )H},
(12)
B(1+ A+ B(1+
D, D)H; BCC D D)Dy,H,
L 0 0 F ]
, (I + G*DD;,) D,
DY ugrsnx o = | B+ D3 D)DL, DL, (13)
I
[Hlpx (nbrany = (14)
(1+ Dy D)H, D,,C (I+ Dy, D)D; H,]
[D;i]PX m' = [(I + D;uD)D;1uD:u] (15)
[Héi]p’x(n+r+n’) = (16)
[H:+ DL, DH; D.,C (D, DD, + Dy, )H,)]
and |
[C"wx (utriny = |[DH: C DD} H] (17)
With these definitions, equations (2), (3) and (7) for 4(¢), y'(¢) and u(t) become
yi(8) = Hya"(t) + Din'(t) (18)
yi(t) = HI'z"(1) + (DL, DDsw' + D, ) D\, (1) (19)
W(t) = Ca(t) + DDL, Diy'(1) (20)

For a well-posed performance index J(¢;), product of direct feedthrough term (DL, DD:  +
D )Di in the criterion output y:(t) and the penalty weighting matrix Q' must be zero.

Similarly, product of the direct feedthrough term DD, Di in the control output u'(t) and the
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penalty weighting matrix R must also be zero. Under these circumstances, the performance
index J(t;) in equations (9) and (10) can be written as,

JNP . . . . »,
J() = %ZW; Trace{Li(t,)["W.T'T} (21)
= =1
where _ ,
Lz(tf) — fof 6(F'-}-o'[)t
[H;TQzHé + CiTRiCz']e(F‘+a‘I)Ttdt

In the derivation of the analytical gradients of the performance index J(t;) with respect
to design parameters in C, of the controller state matrices, it is convenient to express the
closed-loop system matrices in terms of C, explicitly, as suggested in [9],

F' = Fi + (G} 4+ T,C,DY)C H; (23)
I =T+ (GL + ToC.D)CD, (24)
H" = Hi + DyC,H! (25)
¢ = [DH! ¢ DD, H,) (26)
=T\C,H!
where _ o
Fi 0 I'H.
[F;](n+7'+7l’)x (ndr4n') = 0 0 0 ) (27)
0 0 £,
| G 0
[G(lg](n-}‘r-%—n’)x (m+r) = 0 I (28)
0 O
| I,
[Ff»,](n-}—r+7z’)x m! = 0 (29)
I,
i H.; 0 D;szlu
[Ho](;)+1-)x {(n+r+4n’) = [ 0 I 0 ] (30)
[H{]p’x (ntr+n’) = [H; 0 Df:quj;] (31)
1 Diiju Qs
[Do](IH-T)X m’ = ‘i 0 ] (32)
1 D.{su 0 ‘
[Dilp4rix (mar) = [ 0 0 } (33)
[Dilpix (man) = Dt 0] (34)



[Tl]mx (m+r) = [I 0] (35)

0 0

[T2](n+r+n’)x (m+r) = 01 (36)
00

000}

[TB](p+r')x (n4r+n') = [ 01 0 (37)

It has been shown in [9] that derivative of the performance index J(t;) with respect to
the controller matrix C, (i.e 8J/0C,) can be obtained explicitly from the following set of
equations,

oJ/oC, =
S WD QHL + TTRC™) X' (¢ HiT+ 38)
(Gi + TyC, DY) Mt ) HIT + L4t )T W DT+
TIMi(t ) HIT + Li(t) D" Wi DT I(DiCo)' T}
where ,
Xe(t =
fOt! e F" +al)t Fleozl‘wTe(F'+aI) t dt
Lity) = (40)
fotj 6(F"+aI)Tt (HIzTQH/z + CliTRC/i)e(F"+aI]t dt
Miftg) = [ J e 4V (T QU +
(41)

Cvli'I‘RCVH)e(F"+aI)trli I/VgFIiTe(F”+o:I)Ta do dt

From equations (21)-(22) and (38)-(41), evaluation of the performance index J(t;) and
its gradients 9.J/0C, would require algorithms for efficient computation of the follow-
ing two types of integrals of matrix exponentials: X(t) = s e BeC" dr and M(t) =
N eAlv=3) BeCv DeFs s dv. In the next section, we review briefly the numerical algorithm
developed in [9] for the computation of X(¢) and M(t).

3. Current Method for Evaluating X(t) and M(?)

Previous methods for evaluating X(t) and M(t) involve basically the diagonalization of the
matrices A, C and E in the exponential functions. The procedure requires the determination
of the eigenvalues and eigenvectors of these matrices. It is further assumed for convenience
that similarity transformations can be constructed from these eigenvectors to diagonalize
the respective matrices. Namely, there exist nonsingular transformations V4 and Vo and Vi
such that

A=VaA Vit C = VeAcVit, E = VeAgVy! (42)

where the matrices A4, Ac and Ag are diagonal. Under these assumptions one can express
for example the exponential function of edt as

r -1
el\t — CVAAAVA t_ VAeA‘“\Q_l (43)



Usage of this decomposition in the calculation of X'(?) is shown below.

t
X(t) = / A BeCT dr
0

t
=V, {/ eA’”BeA“dT} Vit (44)
0

where B = V! BV;. Advantage of this approach is based on the fact that the exponential
function of a diagonal matrix is also diagonal. In this case, time integration in X(t) can be
performed directly by explicit integration of product of scalar exponential functions. The
resulting numerical algorithm is quite accurate and efficient, provided that the transforma-
tion matrices V4 and Vg are not ill-conditionned. A similar procedure can also be applied
to the evaluation of M(t). Complete discussion can be found in Appendices C and D of
[9]. However, breakdown of this algorithm will occur when the matrices A , C or E become
degenerate or near degenerate; a situation that becomes eminent when we address control
of flexible structures with densely packed modes as demonstrated in the design examples of
sections 8 and 9.

Clearly, in order to have a reliable design algorithm for optimal low-order output-feedback
control synthesis [9], one must develop a robust numerical scheme to evaluate matrix integrals
of the form shown in X(t) and M(t) for the case of a degenerate system.

4. Alternative Approaches for Solving X(t) and M(?)

One rather simple approach is to evaluate

i
X(t):/ ATBeCTdr (45)

0
¢ v
M(t) = / Av=3) BeCv DS ds du (46)
0 J0

directly using techniques based on numerical quadrature. Efficiency of numerical integration
techniques is poor; especially when it requires small integration step size for satisfactory
accuracy in the case of stiff system matrices A4, ¢ and E. Another possibility 1s to use some
types of algebraic Lyapunov equations for the solution of X(t) and M(t). For example, it
can be easily shown that the matrix X({) can be obtained from the solution of the following

Lyapunov equation,
t

AX(t) + X(H)C = [eA’BeCT}O (47)

Solution of equation (47) exists if A;(A) 4+ A;(C') # 0. This condition will not be satisfied
in general for arbitrary system matrices A and C. Thus, from practical purposes X(t) and
likewise M(t) cannot be solved from a scheme based on Lyapunov equations.

Another possible approach is based on the direct use of exponential matrix. [t is well-
known [12] that convolution integrals involving matrix exponentials, as represented in the
matrices X(t) and M(t), can be derived from the matrix exponential of an augmented



matrix. It can be shown that the matrix X(¢) can be derived from a product of the following

matrix exponentials,
At - —-A B] } [O]
X(t)=¢€e"[1 0]6.1]){[ 0 C bl (48)

Thus, computation of X (¢) now involves the computation of a matrix exponential. A simple
reliable algorithm for computing the matrix exponential is given in section 5.

In a similar fashion, one can express the matrix M(t) in terms of a submatrix of a matrix
exponential. To see this, we start from its definition

i v
M(t) = / / eAW=3) BeCv D ds du
o Jo

t t
= / e As {/ e BeCv dv} Def? ds
0 s

—— /Ot e~ A {/ts eAvBecvdv} (49)

xDeb® ds

Let’s perform a change of integration variable v =t —r. We have,

t t—s
M(t) = / e~ s {/ A=) BeClE=) iy }
0 0

«DeP ds

0 t—s N
- _ / 6A(t—s) {/ 6—-ATB€—( Td"l’}
t 0

+CtDe E=9)d(t — 5)eP!

t q
= / e {/ e~ A" Be " dr}
0 0

«CtDe" B dg eF

t q y ,
:/ {/ Ala=7) g Ct/2,~Cr dr}
o o

xC2 Def=9dq (50)
Notice that part of the integrand in equation (50) delimited by braces can be replaced by

terms involving the exponential of an augmented matrix. This follows simply from results
developed for the matrix X'(¢). With this substitution, we obtain

e ERa 11—

>'<€Ct/2D€E t—q) dq
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t Ct/2
:A[[O]exp{[? ch ](t—q)}
* ([ (; ] eCt/zD) et dg

A BeCY? 0 0
=[I00lexp{ | 0 —C  €°?D |ty |0
0 0 E I

In this section, we have shown that the matrices X'(¢) and M(t) can be formulated in terms
of the solutions of some matrix exponentials. Their evaluation depends therefore strongly
on the accuracy and reliability of numerical methods for computing matrix exponential. We
will present one such algorithm in section 5. However for computational expediency, special
consideration must also be taken to ensure the efficiency of the overall scheme when the upper
limit ¢ is large and one of the matrices A, C' or D is unstable. Also one must economize
memory requirements associated with high dimensionality of the augmented matrix when
computing the matrix exponential. These considerations will be elaborated in sections 6
and 7 where we give precise algorithms for the computation of the matrices X'(t) and M(?)

respectively.

5. Numerical Method for the Matrix Exponential

Several numerical methods are available for the computation of the matrix exponential [11].
Among all these, an approximation method based on Padé series is found to be satisfactory
[12]. Animportant component in any numerical routine for matrix exponential is the scalmg
of the matrix argument prior to the series calculation. Due to the simple result that At =
(eAt2)2 a scale factor in terms of powers of two (i.e 2™) is often used. In this scheme, one
can recover the actual value of the original matrix exponential by performing m squarings
on the matrix exponential of the scaled matrix. The index m is determined based on the
desired size for the scaled matrix. In our algorithm, scaling is applied to the original matrix
until its oo-norm ||A||, falls below 1/2.

As mentioned above, the preferred series approximation in our computation of the matrix
exponential is the Padé series. Let’s review some of the unique features associated with the
Padé series for the case of a scalar function F(z). On its most basic terms, 1t is a rational
function of z of a preselected order that approximates the function F(z). For a given choice
of the order of the numerator (say N) and of the denominator (say M), the Taylor series
representation of this Padé series must match the power series representation of F(z) for the
first (N+M+1) terms. Namely,

Lizo (52)

Fle)~ Pilz) = S 52

In fact, the most common form of the Padé series is known as the diagonal sequence where
the numerator and the denominator have the same order (i.e M = N). While it is known
that the Padé series for the matrix exponential (i.e F(z) = ¢*) converges only slightly faster
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than the Taylor series for a scalar argument, the improvement is more significant for matrix
argument. In the matrix case, Padé series involves computation of a numerator matrix
N (At) and of a denominator matrix D(At). For a diagonal Padé series of order N, we have

ON=1IN 4,

N zzl.Nig)!(At) Fee
2N-=-)IN! ;
(2N)!i!(N_;‘/)!(At) +..-
(A

D(At)

(53)

+ + +

and AN )N
N(At) = - 2N!(N'—1.)!At

2N -2)IN! 2
+ (‘2N)!2!(N—2)!(At) -

+ (=) g (A

£ AR (A

The matrix exponential is simply given by

(54)

et = DI AL) N (AL) (55)

Invertibility of D(At) is usually ensured by proper scaling of the matrix argument At.

Another important consideration in the Padé series s its length N. Assuming that the
matrix At has been scaled such that ||A¢]|_, is less than 1/2, the parameter N can be choosen
according to [12] such that

oV 56)
(2N (2N +1)!
where € is a given desired tolerance for accuracy.

With a Padé series of N terms where N is determined from above, the approximation can
be thought of as the exact calculation of a matrix exponential for a "nearby” matrix (At + £)
where E is the error matrix with ||E]js < €]|At||o. The relative error of the approximation
is bounded by the following inequality,

(At+E) _ eAt”o:‘
lelos

Thus, reducing the co—norm of the matrix At would indeed improve the numerical accuracy
of the matrix exponential. It has also been shown that methods by series approximation yield
better accuracy if the matrix argument has been preconditioned. Additional improvement
may therefore be gained by first preconditioning the original matrix. Another immediate
benefit of lowering the co-norm of the matrix being exponentiated 1s that the actual scaling
factor m needed would also be smaller; thereby resulting in a fewer number of matrix mul-
tiplications in the squaring procedure. As usual, preconditioning a matrix tends to bring
singular values of that matrix closer together (i.e. lower the condition number), thus avoiding
situation where scaling factor is predominantly determined by a few large singular values,
and causing significant loss of precision related to the set of small singular values. The most
common method used in the precondition of a matrix is the Osborne’s method (14], which

lle

< 6“Atﬂmefllmllm (

[Wha ]
-~J
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minimizes the Frobenius norm of that matrix (and thus indirectly lowering its oo-norm).
However, extensive tests conducted so far seems to indicate that preconditioning of a matrix
did not yield significant reduction in the co-norm and a smaller scaling factor to justify the
added computational efforts incurred in the Osborne’s method. The procedure of precondi-
tioning a matrix is nonetheless recommended from the point of view of improved accuracy
(see [15] and[17] ).

In the implementation of our design algorithm for optimal low-order controller synthesis
9], a value of € = 107° has been selected requiring therefore a 4-terms Padé series (i.e N = 4)
in the evaluation of the matrices X*(t), £i(t) and M'(t) of equations (39)-(41). Additional
considerations in the implementation of the proposed method for computing X () and M(t)
are given in sections 6 and 7.

6. Detailed Algorithm for Computing X (1)

As seen in the previous section, the matrix X'(f) can be evaluated in terms of a matrix
exponential as shown in equation (48). Conceptually, it is a simple and straightforward
procedure to compute the matrix exponential of any arbitrary matrix using the Padé series
discussed in section 5. However, it becomes a nontrivial task when we try to implement an
efficient algorithm that examines carefully the issues related to accuracy, speed and memory
requirement. The basic difficulties lie in the fact that the matrix exponential is for an

augmented matrix of a particular form,

_ em Al ALY (Y
N RO N

where A = CT = F' 4+ o'I according to our problem in equations (39) and (40) for the
matrices X¥(t;) and L'(ty) respectively. Clearly, if the system matrix A is stable (i.e all
the eigenvalues of the matrix A have negative real parts) then one could easily encounter
numerical overflow when evaluating the term e~ even though the matrix integrals X'(¢) and
L(t) of interest are perfectly well-behaved. The overflow problem occurs most likely in the
final squaring process. To arrive at a feasible approach in the evaluation of X (¢), one needs
to examine in details the steps taken in arriving at the matrix exponential of the original
matrix starting from that of a scaled matrix (i.e in the squaring process).

Let’s assume that one has scaled the input matrix A by AA? where Afis a reasonably
small time interval given by At = ¢/n = ¢/2™. Thus, we need to first evaluate

—-A B
exp 77 | Aty where At = t/n=1t/2".
0 C

For notation convenience, we define

ol 2]} - [0 7]

_ e—AAt t,—AAt fOAt CATBGCT dr
- 0 eC’At
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Furthermore, let W = exp(AAt) = D~'. Now we can write our result as follows,

X(t) = WrD"E+ D"2EF

_+_D71—3EF2 + ‘”_+_E'Fn—l]’ (60)

or

X(t)=W[E+WEF + W2EF 4 ...+ WIEF™). (61)

' : . D FE :

The above results are produced by performing m squarings of 0 F and taking the
appropriate submatrix for X(¢). In our application (cf. equations (39)-(40)), the solution
would therefore involve products of matrices of size 2(n + r + n'). Close examination of
equation (61) leads to the following algorithm involving only product of matrices of size
(n + r 4+ n') with the final result achievable in m steps,

Step 1:

P =W, Q. =F, Ry =F

Step 2:

P, = P, Q2 = Qi+ Ry, = R}
PlQlRla

Step m:

Pm = P;?z——l Qm - Qm—1+ Rm = R?’n—l
Pm_lQm—lRm—la

Finally, X(t) = WQ,,. It should be noted that one can "absorb” this extra factor of W
(= e*4t) into the matrix @; without any change to the above algorithm (i.e starting the
above algorithm with @y = WE instead). This removes the need to retain the matrix W
throughout the computation.

Finally, one notes that the terms P; or R, for (i = 1,m) may underflow and become a
null matrix for some # in particular when the scaling factor is large (i.e m large). When this
situation happens, one can simply truncate the series calculation for X(t) up to the i** step
in the above algorithm since all of the significant (and nonzero) terms have already been
accumulated into the matrix ;.

7. Detailed Algorithm for Computing M(?)

Here the numerical algorithm is a bit involved compared to the one given for the calculation
of X(t). This is largely due to the increased complexity of the argument of the matrix
exponential. Following the procedure described in section 6, let’s perform a scaling upon
the input matrix A by AAt such that computation of the matrix quantities M., H,J, P,U
and W = V-1 is well-behaved. These quantities are defined from the following matrix
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exponential,

A Be(l‘z/? 0
exp 0 —C €D | At
0 0 E (62)

P HeY?r M,
=10 1% eC2 g
0 0 U

Due to the possible numerical underflow in the matrix e€t/? for large t, the matrices H and
J are computed directly from the following definitions,

At
H:/ A" BeCT dre R (63)
0

and

At
J = e_CAt/ ST DeFT dr (64)
0

However, the computation of M, in equation (62) can still underflow due to its explicit
dependence on «Ct/2 For the calculation of the matrix M(t), ideally it can be obtained from
m squarings of equation (62). If carried out in this manner, potential numerical overflow
is eminent since, according to our equation for Mi(t;) in (41), we have AT =C =E" =
Fi + of]. Hence, if the matrix C is stable, then the matrix exponential e=¢* = V" will
become unbounded. To bypass this difficulty, as in the calculation for X(t), one needs to
conduct the squaring algorithm explicitly. It can be shown that the matrix M(t) can be
computed as

P M, + PP MU

Pr3 MU+ -+ PMU™?

MoU‘n—l i
HW2J + HW3JU + PHW?J (65)
PHWAJU + PPHWYJ + - -

pPr2HW™J

This formulation no longer involves the matrix V. The above series for M can be distin-
guished into two parts—one that contains the matrix M, and the other that does not. The
terms involving M, can be thought of as

o281

which can be performed by m squarings. The remaining terms involving H,J.W. P, and U/
are computationally intensive and are of the form

M(t)

+ 4

n—2n-2
STSCPPHWHHIJUT, where 2+i+ 5 <n. (67)

1=0 3=0

This equation, owing to the restriction 241+ < n, is not easily calculated in m(= logs(n))
steps. A reasonably efficient procedure for computing the final matrix M(¢) is to merge both
the easily computed portion given in equation (66) and the more difficult series in equation
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(67) into a sequence of m steps, as shown in figure 3. Due to potential numerical underflow,
the term Wi~ is not accurately obtained from the product W*V? where V = W1, Indeed
one needs to recompute the term W"F2=% at each step of the above algorithm. This could
become the major drawback of our scheme even though we have used an efficient matrix

exponentiation routine to compute Wi requiring at most 2 x logz(i) matrix multiplies.
If in addition W™ is zero (or effectively so), restriction on the indices tand jof 24147 <n

in equation (67) becomes inconsequential; hence we can express

YIS s PHWH U =
(H+ PHW + PP HW? + .. )W?
«(J+WJU + W2IU? + - )

resulting in a simpler algorithm involving the following three terms:

wvalf 2T

(b) (H+ PHW + PPHW? 4 .-+ P"2HW" )
(C) (J + WJU + W2JU? 4+ 4 WH—‘ZJU'VL—Z)

This algorithm can again be computed in m steps as seen in figure 4, but now there is no
costly evaluation of a W* term at each step.

Further simplification of the above algorithm can be achieved if we make use of the fact
that we have A = E = CT (cf. equation (41)) and therefore U = P = WT. If, for some
index j < m, W? (and likewise U? and P?) is zero or nearly so, then this calculation for
M(2) is reduced to M(t) = H;W?2J; since My, =0, H; = H, ,and J; = J.

In the following sections, we compare the usefulness of the proposed algorithm to the
early algorithm presented in [9] in the design of low-order optimal controllers for two flexible

mechanical systems .

8. A Simple Two-Mass-Spring Design Problem

Control of flexible mechanical systems has been of interest in recent years [18]. This problem
provides us a simple design case where degeneracy in the closed-loop eigensystem can be
easily illustrated. The problem is to control the displacement of the second mass by applying
a force to the first mass as shown in Figure 5. At the start, it is simple to verify that the
basic open-loop system has a pair of degenerate eigenvalues at the origin. Equations for the
dynamic model are given below,

mith = Ky —p) Futw

. (68)
mays = k(y1 — y2)
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or

! 1 0 0 0 L)1
alwn|_10 —kfmy 0 k/my s
|y, 10 0 1 0 Yo
Y5 0 k/my 0 —k/my Y5 (69)
0
+ l/gnl (u + w)
0

where my = mq = k1 = k; = 1. For comparison, we have obtained an optimal second-order
controller design of the form,

0 1 0

C = [Cn Cral; D = [Du]

using both algorithms. The control design problem is to minimize the following H*norm
of the closed-loop transfer function 7,, between the disturbance w and the displacement
y, of the second mass through the controller design parameters App, Az, Ch,Che and Dyy.
We start with the following arbitrary initial design guess of Ayy = —2,A4 = —1,Cy =
0,Cy, = 0.5, and D;; = 0. Both algorithms converge effectively to the same optimal design
gains of Ay = —0.8571, Ay = —0.9258, Cpy = 0,C1; = —0.4535 and Dy = —0.2449 and
with an optimum value ||Ty2w||§ = 7.71838215122. A summary of the resulting closed-loop
eigenvalues is given in Table 1. The main difference between the two algorithms is in the
CPU time for the overall computation. Results are obtained for a VAX/VMS-Workstation
DEC-3500 as follows: CPU time of 19.59sec with the algorithm based on diagonalization
and 97.36sec using the proposed method. The increase in computational load is expected
and constitutes the basic trade-off between reliability and speed of the solution algorithm.
The proposed algorithm is more reliable and with this advantage does take a bit longer in
computational time. With the early algorithm of [9], one cannot initiate the search for an
optimal compensator design with zero gains (e Agy = Ayy =Cyy = Cio = Dy = 0) because,
in this case, the closed-loop system would have two pairs of degenerate eigenvalues at the
origin; one for the rigid-body mode and the other from the open-loop compensator poles.
To alleviate this problem, it was suggested that one simply starts with any compensator
design (stabilizing or not) that produces initially a non-degenerate closed-loop system. Even
with these considerations, it was found that occasionally the algorithm could break down
due to the presence of near degeneracies in the closed-loop system matrix. Thus, for a
reliable design method, solution algorithm must treat degeneracies as a common occurrence.
This situation is more evident in the optimal output-feedback control design for high-order
structural models with closely packed flexible modes.

Future consideration would be to develop a hybrid algorithm taking advantage of the
computational efficiency of diagonalization when the closed-loop system matrix is not de-
generate, and turning to the current algorithm when degeneracies are detected. System
degeneracy can be easily checked from the condition number of the eigenvector matrix.
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In the next section, we present a design problem where degeneracies occur frequently and
therefore it could pose a serious difficulty for the early design algorithm based on diagonal-

ization.

9. The JPL Large Space Structure Control Design

In control problems for large flexible mechanical systems such as space structures, causes of
eigenvalue degeneracies are usually more subtle in nature than the simple case presented in
section 8 for a two-mass-spring system. The JPL large space structure has been carefully
designed to simulate a lightweight, non-rigid and lightly damped structure in a weightless
environment [16]. The structure itself resembles a large antenna with a central boom-dish
apparatus and an extended dish consisted of hoop wires and 12 ribs (Figure 6). There are
two torque actuators (labelled HAl and H A10) on the boom and dish structure to control
the two angular degrees of freedom in pointing maneuver, and force actuators at four rib
root locations (labelled RA1, RA4, RAT and RA10) for vibration control. From the point
of view of control design, it is a challenging problem since the plant has many closely spaced
modes and is of reasonably high order. There are a total of 30 modes in the basic structural
model. The flexible modes are lightly damped with damping ratios ranging from 0.007 to
0.01. The two rigid-body modes have a damping ratio of 0.12. Our design concept Is to
use two available angular displacement sensors H.S1 and H 510 of the boom-dish apparatus
and the two torquers HAl and HA10 collocated with these sensors for control synthesis.
With this selection, 20 of the flexible modes associated primarily with the rib motion become
uncontrollable and unobservable. These modes are removed by modal truncation from our
plant synthesis model. Eigenvalues of the remaining 10 modes are shown in Table 2.

An optimal low-order controller is designed to dampen vibration of the antenna to exter-
nal excitations. To evaluate the effectivenes of the control system, we perform the following
test. The entire structure is agitated using the two boom-dish actuators for the first 6.4 sec-
onds with an applied torque in the form of a square wave of 0.8 second in width and with an
amplitude of 1 N-m. The control system is then activated right after the excitation has been
removed, and responses of the excited structure at the sensors are examined. The design
objective is to damp out the induced vibration as fast as possible without excessive use of
controls. Note that the natural responses of the structure will take about a few minutes to
decay to zero (Figure 8).

For practical implementation, the controller design is choosen to be of 6t order and has
the following form,

[ =50 0 Az A A Ass ]
—50 Az Az A Age
0 1 0 0
Ay A O 0
4453 A54 0 1
Aes Ass Aes  Aes

[ BN e BN v BN an Bl en
oo o2
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The first two states in the controller model serve as roll-filters, limiting the control bandwidth
to less than 50rad/sec. In the design optimization, we have a total of 28 design variables:
16 in the controller A matrix and 12 in the B matrix. The objective function for design
optimization consists of a sum of weighted H%norms of physical response variables observed
at different location of the structure. It is of the forin

J(ty) =
[ ) 2 ) (71)
Lim § {z QiEalyi(ts)] + X, RyFo [ujm)}}

Note that the expectation operator E,[—] is for a system destabilized by a factor o. Table
3 lists the design variables y; and their corresponding penalty weightings @;. Also given in
the table are the control design weightings R; for the actuators HAl and HAl0. Responses
in the above objective function are evaluated to random disturbances of unit white-noise
spectra applied simultaneously at all the hub and rib actuators.

The design optimization begins with the following arbitrary initial guess on the controller
matrices A and B,

-5 0 1 0 0 0]
0 50 0 0 1 0
0 0 0 1 0 0
A= 0 0 -2 -1 0 0
0o 0 0 0 0 1
0 0 0 0 —4 1]
F01 0]
0 0.1
0 0
B = 0 1
0 0
. 1 0]

A destabilization factor o of 0.071 was used to ensure that all the closed-loop eigenvalues
have a real part less than —0.071. The optimization fails to converge when a destabilization
factor of greater than 0.075 was selected. This difficulty seems to be in moving the modes
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at 1.68 Hz under this controller configuration, implying that additional degrees of freedom
must be added to the controller structure given in equation (70).

While the optimization convergence itself took 13.5 hours on a VAX/VMS Workstation
DEC-3500, the proposed algorithm for the calculation of the objective function and its
gradients with respect to the design parameters is robust and leads to well-behaved design
convergence. The final optimal values of the A and B matrices are shown in Figure 7.
Closed-loop eigenvalues are given in Table 4. Primary improvement is seen in the increased
damping of two modes at 0.65 Hz.

Closed-loop responses of the sensor and control variables corresponding to this design are
shown in Figure 8. The controlled responses decay to zero in about 20sec after the excitation
has been removed. Notice that the control torques are within the desired limits of 1 N-m;
the results are obtained through adjustment of the control design weights R; in Table 3.
This design example demonstrates the usefulness of a design algorithm for robust low-order
controllers using parameter optimization, and the accompanying improvement of solution
reliability using the algorithms described in sections 6 and 7 for degenerate systems.

10. Conclusions

Numerical algorithms for computing matrix exponentials and integrals of matrix exponen-
tials have been developed to handle cases where the system matrix is degenerate. Numerical
optimization combined with the given algorithms for the evaluation of the cost function
and its gradients with respect to the controller design parameters has well-behaved conver-
gence even when the closed-loop system becomes degenerate. These algorithms have been
incorporated into a computer-aided-design package for synthesizing optimal output-feedback
controllers. Reliability of the algorithm has been demonstrated using typical design prob-
lems encountered in the control of flexible structures. Clearly this algorithm when combined
with a previous one based on diagonalization would enhance significantly the overall reliabil-
ity of the optimal design procedure for low-order controllers, thereby providing an effective
automated design environment for multivariable control synthesis.
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Figure 1: A Typical Closed-Loop System with a Feedback/Feedforward Controller
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Figure 5: A Two-Mass-Spring Mass System

Eigenvalue Damping | Freq (Hz)
-0.2290 + 0.3397:] 0.559 0.0652
-0.1553 + 0.8480:| 0.180 0.1372
-0.0786  + 1.2950:| 0.061 0.2065

Table 1: Closed-Loop Eigenvalues of the Two-Mass-Spring System

Eigenvalue Damping | Freq (Hz)
-0.09500 + 0.7860:| 0.120 0.12600
-0.08575 + 0.7093:| 0.120 0.13704
-0.02802 + 4.0024: | 0.007 0.63701
-0.02929 + 4.1844:¢| 0.007 0.66598
-0.07405 + 10.583¢| 0.007 1.68434
-0.07405 =+ 10.583:| 0.007 1.68434
-0.11310 + 10.616:{ 0.007 2.57123
-0.11785 + 16.384:| 0.007 2.67929
-0.21365 + 30.520¢ | 0.007 4.85749
-0.21365 + 30.520¢ | 0.007 4.85749

Table 2: Open-Loop Modes of the Antenna Structure




Variable Q: Description
RS1 4100 | Rib #1 root velocity
RS4 3950 | Rib #4 root velocity
RS7 3975 | Rib #7 root velocity
RS10 4050 | Rib #10 root velocity
HS1 16500 | Hub angular velocity
HS510 | 15600 | Hub angular velocity
RS1 1100 | Rib #1 root displacement
RS4 1050 | Rib #4 root displacement
RS7 1150 | Rib #7 root displacement
RS10 1025 | Rib #10 root displacement
HS1 3900 | Hub angular displacement
HS10 4100 | Hub angular displacement

Variable R; Description
HA1 41 | Hub torque actuator
HA10 40 | Hub torque actuator

Table 3: Design Variables for JPL Antenna Structure

Eigenvalue Damping | Freq (Hz)
-0.086899 + 0.65881 | 0.1308 0.1058
-0.089071 <+ 0.74101 | 0.1193 0.1188

-0.3165 £+ 3.624i 0.0870 0.5790
-0.2528 £+ 3.7901 0.0666 0.6045
-0.2162 + 4.112: 0.0525 0.6553
-0.2056 £+ 4.1851 0.0491 0.6669
-0.074193 + 10.58i 0.0070 1.684
-0.074589 + 10.581 0.0070 1.684
-0.1168 4+ 16.151 0.0072 2.570
-0.1253 + 16.831 0.0074 2.678
-0.2142 £+ 30.52 0.0070 4.857
-0.2143 £+ 30.521 0.0070 4.857
-49.99 1.000 7.956
-49.99 1.000 7.956

Table 4: Boom-Dish-Controller Closed-Loop Modes
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Figure 7: Optimized Controller Matrices for LSCL Problem
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DESIGN CHALLENGES FOR THE UH-60 ROTOCRAFT

Brett VanSteenwyk and Uy-Loi Ly ~
Department of Aeronautics and Astronautics, I'S-10
University of Washington
Seattle, WA 98195

Abstract

High performance rotocraft controller design is characterized by having to compensate both
lateral and longitudinal dynamics in a single controller design. Rather than have these modes
largely decoupled in the natural state, often one needs to incorporate mode decoupling as a
part of the controller design, especially with the modelling of higher frequency dynamics. There
exists the usual concerns of stabilizing the behavior without excessive actuator output, however,
in a high performance rotocraft such as the UH-60, good response bandwidth is as important
as stabilization and decoupling.

1 Introduction

The challenge is to develop a stabilizing output feedback controller using a 23 state model to
simulate the UH-60 rotocraft in the hover flight condition. The essence of this challenge is to
develop with a consistent set of techniques that allow a design to meet or surpass flight criteria. In
addition to a stabilizing and decoupling controller, command following on ¢ (pitch), 8 (roll), r (yaw
rate), and w (vertical rate) is required. Sensor outputs include these terms, along with pitch and
roll rates, and the forward and transverse velocities (8 sensor inputs total). Optionally, one could
control the yaw angle (heading) instead of the rate—this issue is not a fundamental one insofar as a
design approach is concerned. Techniques for designing controllers operating with heading should
not be distinguished from those operating on yaw rate.

The UH-60 rotocraft open loop model in the hover flight condition is mildly unstable (see
Table 1). The pair of unstable poles represent a phugoid-like response in the front/side velocity
coupling in with the pitch/roll. In addition, there are modes that are either pure integrating (yaw
from yaw rate, for instance), or are near integrating (roll}. The sensor output of the model consists
of the angular rates p, ¢, and r, corresponding to the angles 8 (pitch), ¢ (roll), and ¢ (yaw) which
are also considered part of the sensor output. In addition, the translational velocities u, v, and w
are considered sensed.

There are 4 actuator inputs: 8, &5, 8., and érg. These stand for the collective (main rotor),
the main rotor sine, main rotor cosine, and tail rotor pitch inputs, respectively. The response of the
UH-60 to a unit collective pulse is shown in figure 1. These graphs give one a sense of the scaling
and sensitivity of the various inputs and output terms.

*The work of B. VanSteenwyk and U. Ly is supported in part by NASA Ames Research Center under grant
contract NAG-2-691.
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li Eigenvalues | Damping | Freq (rad/sec) ]

-9.38957 £ 51.24731 0.180 52.1003
-5.74275 £ 37.1461 0.153 37.5873
-8.62407 + 24.4863i 0.332 25.9606
-24.5088 £ 2903361 0.993 24.6801
-4.22353 £ 19.6367i 0.210 20.0858
-19.3508 1.000 19.3508
-5.71403 + 5.432661 0.725 7.88441
-3.26916 £ 4.26280i 0.609 5.37205
-4.82826 1.000 4.82826
-1.35460 1.000 1.35460
0.229236 + 0.4289331 | -0.471 0.486346
-0.135879 £ 0.52681%1 0.250 0.54400
-0.230418 £ 0.011000a 0.999 0.23068
0.00000 0.000 0.00000

Table 1: Open Loop Eigenvalues of UH-60 Rotocraft

2 Basic LQ Design

What are the limits of full state feedback? Although full state LQ is not always the most satisfactory
design technique, in an ideal circumstance it can define the limits of a stabilizing output feedback
controller. Suppose one defines the control penalty matrix as the identity and focuses on the most
effective output variables to penalize. In addition, there is the issue of controlling yaw rate, or
the yaw (heading) itself. Unless noted otherwise, yaw rate is the controlled quantity (this will not
change the basic conclusions).

We initially try blindly to penalize all outputs to try to stabilize the system. Given a stabilized
system, a feedforward matrix is constructed to try to input commands. It quickly becomes clear
that the quality of command response to pitch and roll commands drops if one is trying to stabilize
the u and vresponses. This seems physically reasonable (pitch forward to increase forward velocity,
and so on). Given an R of I, it seems that increasing the response weighting ¢ will not change
the least stable eigenvalues much—they go from —0.71278 £ 0.22577 to —0.71289 &+ 0.2251¢ when Q
is raised from 10*I to 1000*I. A full listing of the eigenvalues of the closed loop system is given
in Table 2 for the case where Q=10*1. Although the slowest poles are not that slow, one has an
essentially degenerate pair, and thus one has their persistent behavior. It is unfortunate that they
do not move with increasing @.

It turns out that one can control pitch and roll directly, and thus the ground velocities u and
v as a consequence, or one can control the ground velocities with pitch and roll control derived
from this. Since pitch and roll are more desired as directly commanded, and it is more reasonable
to use these to control ground velocities. The penalty weighting on u and v is dropped. The
resulting optimization produces a set of stabilized plant eigenvalues that have worse modes than
before; however, it seems that these modes stay much less disturbable and observable from the
commanded states. Increasing Q reduces the interaction with these poles without changing their
values—they become more exclusively associated with the u and v states, and less with the other
responses. Even so, as seen in the command responses, there is some "hangoff” even when the
nominal diagonal entries for Q (except u and v) are 100,000 (see Table 3). Another way of viewing
this hangoff is to observe Bode plots of pitch relative to pitch command, etc. (See figures 3 and 4)
With the zero frequency dropoff in amplitude of response, one would see the dynamics manifested
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l Eigenvalues l Damping I Freq (rad/sec) I
-33.3483 £ 48.53241 0.566 58.8855
-10.9609 £+ 53.791h 0.200 54.8964
-41.2844 1.000 41.2844
-12.3645 £+ 28.41171 0.399 30.9856
-2.97880 + 17.37731 0.169 17.6308
-29.3151 1.000 29.3151
-23.0359 £ 4.57704 0.981 23.4862
-18.4648 1.000 18.4648
-9.25176 £ 5.21430 0.871 10.6200
-11.4372 1.000 11.4372
-9.81321 1.000 9.81321
-5.15694 £ 3.571551 0.822 6.27295
-0.72756 £ 0.174561 0.972 0.74821
-0.71278 £ 0.22572 0.953 0.74767

Table 2: Closed Loop Eigenvalues of UH-60 Rotocraft, All Output Penalty, Q = 10*I



Magnitude (dB)

Phase (Degrees)

r Poles ] Damping ] Freq (rad/sec)J
-4558.04 1.000 4558.04
-1537.43 1.000 1537.43
-560.935 1.000 560.935
-104.625 + 88.17631 0.765 136.826
-89.8398 1.000 80.8398
-74.8621 £ 22.10331 0.959 78.0570
-11.5621 £ 53.4352i 0.211 54.6718
-29.4031 1.000 29.4031
-28.8883 1.000 28.8883
-2.57737 £+ 17.18761 0.148 17.3798
-10.6260 1.000 10.6260
-10.2186 £ 0.749891L 0.997 10.2461
-4.75180 £ 5.7088T 0.640 7.42770
-1.03407 1.000 1.03407
-1.00059 1.000 1.00059

-0.965363 1.000 0.965363
-3.98898e-003 =+ 6.71659e-0031 0.511 7.81182e-003

Table 3: Poles in LQ Stabilized UH-60 Rotocraft System, Q=100,000
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Figure 3: Bode Plot of Pitch/Pitch Comumand Response, LQ for Q= 100,000
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Figure 4: Bode Plot of Roll/Roll Command Response, LQ for Q=100,000

in a hangoff. Note that this problem is not very severe for the yaw and up rate commands, though
noticeable.

A ready conclusion was formed—something other than straight penalty on the command outputs
was needed. To get decent results, the value of Q (and subsequent actuator activity) had to be
stratospheric. There were still minor, but noticeable, hangoffs in the commanded outputs even at
values of 100000.

Note the following meaning with u and v being nearly integral poles. It simply provides for
their control via pitch and roll commands. To attain a desired forward velocity u, one would pitch
forward, allowing the rate to ramp up to a desired value, then pitch level again. It would seem
intuitive, then, that it is impossible to regulate the set: [u,v,9,0] as a whole. It would also seem

that the existance of near-integrator poles for v and v is desirable.

3 LQ Design with Integral Control on Pitch and Roll

A ready solution to relieve the hangoff n a command response is to put an integral control state
on it. Although for the purpose of synthesis we put the integrators in the plant, in reality they are
more states in the controller. Thus any practical implementation will have to contend with these
additional states in the controller and the additional numerical challenges they provide. Addition-
ally, integral control is associated with lower bandwith, and thus is to be avoided if possible. It
seemed that the pitch and roll commands had the worse of the hangoff problems, so integral control
was applied for these commands. In addition, in the interest of eliminating another integrator, the
heading state was not included (that the pilot controls heading via yaw rate commands).

The resulting system had 25 states: 23 model states, and 2 integrator states. The existance of
integral states allowed the blending of proportional, integral, and derivative states for both pitch
and roll to form zero locations that would serve as closed loop system pole attractors. In a frequency
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Figure 5: LQ Full State Design with Two Integral Controls

domain sense, one had:
.9 )
al*/M+a2*A6+ag*9:—* (a1+ags+ags )
s

To keep the scaling relative to the error constant, one should leave az (the proportional term) as 1.
Thus, a; and as need to be adjusted so that the zeros associated with this criterion (penalty) will
be at desired locations. For the pitch criterion, a; = 1, @z = 1, and a3 = 0.25. For the roll criterion,
ay = 1, a; =1, and a3 = 0.2. For Q = diag[1,0.1,1.6,2] (8, ¢, », and w), and R = diag[10,1,1,1]
(60, b5, 6., and b7R), one achieved very satisfactory results, revealed in part by the behavior of the
eigenvalues (see table 4). The Bode and time series responses tell the rest of the story (figures 6 to

13).

4 Loop Transfer Recovery

Given the selection of LQ design as the basic approach for the full state case, the use of LTR
to select appropriate observer dynamics (full or reduced order) largely presumes an existing set
of feedback gains. The degrees of freedom reside with the estimator portion (be it full state or
otherwise). The preferred norms and criteria for recovering the full state performance from an
output feedback controller should be kept consistent. Thus, since we have started by using Hy, we

shall continue to do so.



Magnitude (dB)

Phase (Degrees)

Poles [ Damping | Freq (ra‘d/secu
-9.38043 £ 51.2638 0.180 52.1149
-6.11002 £ 37.2574i 0.162 37.7550
-8.72514 £ 24.601L 0.334 26.1025
-24.5081 £ 291104 0.993 24.6804
-4.20761 £ 19.5369 0.211 19.9849
-19.3829 1.000 19.3829
-5.98385 £ 5.24203i 0.752 7.95521
-3.75264 £ 4.67419%1 0.626 5.99413
-6.51433 1.000 6.51433
-4.65048 1.000 4.65048
-1.87052 £ 1.379951 0.805 2.32446
-1.48464 £ 0.6005L 0.927 1.60149
-1.70573 £ 0.109051 0.998 1.70922

-3.98898e-003 + 6.71659e-003i 0.511 7.81182¢-003

Table 4: Poles for 2 Integral LQ Stabilized System

0
-100
_200 L . ) ool . S . .
102 10-1 100 10 102
Frequency (Rad/Sec)
0 2 Int LQ (pitch)
T
G T
: R e
NG
500 R RN, RIS L e
10-2 10-1 100 101 102

Frequency (Rad/Sec)

Figure 6: Bode Plot of Pitch/Pitch Command Response, LQ 2 Integral Control
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Figure 8: Bode Plot of Yaw/Yaw Rate Command Response, LQ 2 Integral Control
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Figure 9: Bode Plot of Up/Up Rate Command Response, LQ 2 Integral Control

The premise of CLTR is simple. Assume the system:

¢+ = Ar 4+ Biw 4+ Bu (dynamics)
: = Cix + Dpw + Digu (criteria)
y = Cyx + Dyw + Dyu (sensors)

where w is the command/disturbance input and u is the control input. A state feedback matrix
F is found that gives the system desired properties. Since state feedback represents only the
achievable, but not the actual performance due to noise and limited sensor output, the focus is to
add dynamics to synthesize individual or combinations of the necessary states. Within the context
of this problem, the disturbance input w is the commanded output (pitch roll, yaw, or vertical
velocity), with u remaining as the full set of actuator controls. The objective is to minimize the
difference in criteria responses to disturbance (command) inputs for the full state versus output

feedback systems (see [4]):
Tzw(S) - TOzw(S) = Ef(s) - TZU(S)’Mf(S)

This is generally approached by minimizing ||My(s)|], in Ricatti-based methods, while the error

function itself can be minimized using direct optimization schemes.
In addition, the direct optimization does allow one to alter some of the state feedback gains.

In this case, it was initially held that those states associated with ¢ and 6 and their error integrals
are held constant as these nominally would not be affected by changes in the rest of the controller.
However, for the states associated with the rest of the outputs (p, ¢, 7, u, v, and w), the gains
of the feedback matrix are allowed to float. Although the integrators on the command error are
treated as part of the plant here, it is understood that they will be a part of the controller. The
formal numerical approach induces one to leave it as part of the plant during the design process so

as to use the full state feedback matrix as 1s.

10
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5 Output Feedback Designs from CLTR: The 2 Integral State
System

These arise by starting with the full state feedback matrix (or relevant parts thereof) and moving
to reduce the error difference between the trial output feedback system and the baseline design
produced in Section 3. What results can one expect? Looking at the S.C.B. [3] of the basic
plant from the control input to the measured output, we find that it is left invertible and include
4 infinite zeros. There are no invariant zeros. The infinite zeros are probably from the integral
control states and combinations of u, v, pitch, and roll. Note that the original state feedback matrix
K is preferable for constructing a command feedforward for r and w. While exact recovery is not
possible due to some infinite zeros, asymptotic recovery is. The results from the full order and
reduced order observer designs are expected to be good. Not much else offhand can be said for the

general compensators.

5.1 LTR Design I: Full Order Observer Design

In regards to reducing this error,
TL(5)Ms(5) = Ef(s) = TLy(s) = Tozu(s),

Zu

one can compute the error M;(s) directly in terms of the plant matrices and the estimator matrices:
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Plant Structure Observer Structure

r = Ax+ Biyw+ Bou g = (A-KC))z+ Bau+ Ky
: = Ciz+Dnw+Diulu = —Fz
y = Cg.’L‘ + D21 w + D22U

With K is the unknown estimator gain matrix,
Mi(s) = F(sI—A+KCy) ' (Br— KDa)
M}(s) = (B —DLKT)(sI - AT 4 TR 'F

This corresponds to a dual system:

i = ATa+Clus FTw
z = BlTi + Dglu where:
u = —KTg

Minimizing z above in an Hj sense with respect to KT is most easily performed through LQ. This
is in general a problem with coupled weighting between the states z and controls u, and is usually

7‘1),1:71. o0 7 ‘m.z:n, o By * BlT By * Dgl xr
I zdt = / Tz u . dt
' ]o Yo o v [ Do+ BT D » D) u

The issue is to deal with the singular part of Dy « DI} . If one does the Singular Value Decomposition

on Daqy:

singular.

b T. T _ Tr;T
Dyy — UpEpVE: Dy x DI = UpEpEhUp

where: i i
c2 0 0
0 o 0
vyl '
=D=D = | o ... o2 o 0
o - 0
Lo A

One must supplement the singular part of this matrix with a small magnitude matrix. The singular
part, in practice, is usually not well defined: the singularity is usually relative to the maximum
singular value, not just an element being zero. Suppose one chooses an ¢ equal to 0.000001 « ol If
this magnitude is greater than o2 for some m, then the matrix to add to Dy * D¥, would be:

. 0 . 01 .,
0.000001 % o2 « Up * | ](m—lo)x(m—l) [I] } UY]‘

One examines the asymptotic properties as ¢ — 0. If the open loop system can recover the state
feedback properties exactly, then the gain matrix KT will converge. If not, usually some of these
gains will approach infinity.

For this design, K will not converge as ¢ goes to (. What was done here was to observe the
recovery error as a function of ¢ and figure a tradeoff between decrease in error and increase in
controller activity. It became simpler than that when 1t was observed that the response to the yaw
rate and vertical rate commands became worse at a point. This seemed to correspond to where
the recovery error no longer improved a great deal with decreasing ¢ (the responses to the pitch
and roll commands were still improving at this point). A value at 0.0025 was settled upon. The

following shows the recovery error for some values of €.
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€ Recovery Error
0.01 0.58031
0.005 0.48800
0.0025 0.44232
0.00125 0.43586

The resulting eigenvalues for the chosen design are in Table 5. These tend not to be very sensitive
to the value of € chosen and hence do not tell very much. What does tell a lot is a plot of the

r Poles I Damping l Freq (rad/sec)4|
-251.746 1.000 251.746
-33.5007 £ 49.09201 0.564 59.4384
-10.1434 £+ 52.6143: 0.189 53.5832
-9.38043 £ 51.263% 0.180 52.1149
-46.5182 1.000 46.5182
-6.11002 + 37.2574i 0.162 37.7550
-10.4599 £ 2713901 0.360 29.0849
-8.72514 £ 246011 0.334 26.1025
-5.92371 £ 19.6943 0.288 20.5659
-4.20761 £ 19.5369 0.211 19.9849
-24.4609 £ 3.59780 0.989 247241
-24.5081 £ 2911041 0.993 24.6804
-19.3829 1.000 19.3829
-20.0000 1.000 20.0000
-20.0000 1.000 20.0000
-11.1077 1.000 11.1077
-5.98385 £ 5.24203 0.752 7.95521
-3.84041 £ 5.567371 0.568 6.76345
-3.75254 £ 4.67419i 0.626 5.99413
-6.51433 1.000 6.51433
-3.56047 £ 3.395551 0.724 4.92003
-4.70424 1.000 4.70424
-4.65043 1.000 4.65048
-1.87052 £ 1379951 0.805 2.32446
-1.48464 £ 0.60051 0.927 1.60149
-1.70573 £ 0.109051 0.998 1.70922
-0.16719 £ 0.490561 0.323 0.51827
-0.23179 £ 0.41152) 0.491 0.47231
-1.28631 1.000 1.28631

-4.2607%-3 £ 6.65864e-3 0.539 7.90518e-3

Table 5: Full Order Observer Design Eigenvalues, 2 Integral Control

maximum singular value of both the controller activity and of the error with respect to frequency.
These are shown for the various values of € in figures 15 and 16.

The design does not end here. Note that this recovery process operates on a matrix M,
not the actual recovery error. Perhaps much of the controller activity has gone into regulating
high frequency components of the error that will not pass through the plant anyway (remember:

E¢(s) = TS (s)M/(s)) Suppose one can augment the transposed system associated with M to
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Results for Various Weighting Factors
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Figure 16: Controller Activity, Full Order Observer
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reduce weighting of the subsequent LQ process on the higher frequency components. Thus, the
recovery design will do better at the low frequency end at the expense of the high frequency end.
Intuition would indicate that putting the corners of these first order filters on the outputs at 8 ra-
dians/s for the pitch and roll components and 4 radians/s on the yaw rate and up rate components
would make sense. Actually, some testing was done, and a corner of 0.5 radians/s was used for all

filters. Because of this, weighting for more controller activity (lower values of ¢) were called for.

Some overall results can be summarized as follows:

€ Recovery Error

0.0001 0.3629

0.00001 0.2777

0.000001 0.2746

0.0000001 0.4136

r Poles I Damping I Freq (rad/secu
-208.040 1.000 208.040
-114.649 1.000 114.649
-47.6094 + 52.94271 0.669 71.2010
-10.3964 + 52.48261 0.194 53.5025
-9.38043 + 51.26381 0.180 52.1149
-62.2535 1.000 62.2535
-62.2535 1.000 62.2535
-6.11002 £ 37.2574 0.162 37.7550
-13.5964 +  27.27801 0.446 304788
-8.72514 £ 24.601D 0.334 26.1025
420761 £+ 19.53691 0.211 19.9849
-7.14504 £ 18.185T1 0.366 19.5390
-24 5250 £ 3.770651 0.988 24 .8131
-24.5081 + 291104 0.993 24.6804
-19.3829 1.000 19.3829
-12.0730 1.000 12.0730
-5.98385 £ 5.242031 0.752 7.95521
-3.19825 = 6.34656: 0.450 7.10687
-3.75254 %+  4.67410 0.626 5.99413
-6.51433 1.000 6.51433
-3.96063 =+ 2.27644i 0.867 4.56823
-4.88859 1.000 4.88859
-4.65048 1.000 4.65048
-1.87052 £ 1.37995 0.805 2.32446
-1.48464 + 0.6005Li 0.927 1.60149
-1.70573 £ 0.109051 0.998 1.70922
-0.66682 =+ 0.39932i 0.858 0.77724
-0.23421 £ 0.46426 0.450 0.51999
-1.39861 1.000 1.39861
-4.26079e-3 £ 6.65864e-31 0.539 7.90518e-3

Table 6: Full Order Observer Recovery, 2 Integral Control, Weighted
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As one can see, this design is much more favorable. The errors at higher frequencies for My are not
significant in the overall error. Note that now there is a definite minimum at 0.000001 (the chosen
€). The eigenvalues are seen in table 6, with plots of the recovery error and controller activity as

seen in figures 17 and 18.

Results for Various Weighting Factors
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Figure 17: Recovery Error, Shaped Full Order

5.2 LTR Design II: Reduced Order Observer Design

If one were to reconstruct all the states assuming that the measurements were relatively noise-free,
then a Luenberger Observer with a minimal number of estimated states would be appropriate. The
variables: p,q,r,u,v,w,¢, and § are all assumed to be measured (along with the integrals of ¢
and 6), and the remaining 15 states, those of inflow, lag and flap, had to be estimated or otherwise
accounted for. Thus, in the general form for the Luenberger Observer:

Lv+ Gy + Gau
r = Puv+Jy

u = —Frx

U

with:

QA - LQ = GICVQ, G2 = QBQ, and: JC‘Q + PQ = ]23.

A clever set of transformations exists that will move this problem into the form of a full order
observer and a corresponding dual system (see [4], section 4.2). Fortunately for this problem,
little has to be done to achieve this form. The direct feedthrough term from the controls to the
sensor output is assumned zero. The first step involves a transformation of the original system.
The measured outputs become states (unless there is a direct feedthrough from the disturbances to
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Results for Various Weighting Factors
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Figure 18: Controller Activity, Shaped Full Order

them). The rest of the states along with the direct feedthrough terms form the rest of the systern:

Original System:

o = Ald'+ Blw+ Byu
: = Ci2' + Djw+ Diyu
y = C'é.l‘/ + DI21 w
hecomnies:
i ] Al A Ty Bi B
. = + : + Ty
{ ry | i Ao Az ] { T3 ] [ B2 Bao ‘

: = Ciz+4 Dniw+ Dru

Yo | _ 0 C'2,02 T Do w
Yi | L Ip—mg 0 L2 0

The UHG0 system has neither a Dy nor a Dyq term, so the xg states are soley represented by the
non-output states. Needless to say, (202 is non-existant (as is yo), and no transformation on the
state variables is needed since the existing outputs are states already. Defining an observer gain
matrix K,, with partitions [R,q, K,1] corresponding to [yo, ¥1), a few more transformations will

yield the Luenberger form:

First define:

Aor e ‘422 — ](r()CQ,Uz — I"r1A12
Then:
v = Agv+ (B‘Z,'Z - K Ba ) u+ Kroyo

+ (A — KA + A K ni
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) 0 Ly—mo
= v+ ;
! l: In—p-}—mg ] l: Arl vt

u = —Fz
Partitioning F along the lines of x: F' = [F}, F3), and with the usual definition of recovery error:
E(s) = Tou(s)M.(s),

it works out that:
M, (s) = Fy(sI — A, + K,C,)™ (Br — Ki Dy)

with:
Cy,02 Daip
A, = A9y, B, =Bipa, Cp = ’ , Dy = ’
22 1,2 { A r Bi.

Minimizing M, is equivalent to finding a state feedback matrix of the transposed system to minimize
the responses—the same form as for the full order estimator.

A straightforward LQ/Ricatti solution yields the appropriate observer gain matrix which then
must be plugged in to the above equations to generate a dynamic compensator.

€ Recovery Error
500 0.9555
250 0.9007
125 0.9135
62.5 1.0012

Again, looking at these values of the recovery error, as well as plots of the yaw rate command
response (which does not necessarily improve with decreasing €), the value of 250 was settled upon.
Note that for less than this value, the recovery error does indeed start to rise from this point.
Consider that the recovery error presented in the table is no longer just the magnitude of the M(s)
matrix. The eigenvalues of the closed loop system corresponding to the ¢ = 250 design are shown
in Table 7. Although the order of the system has been reduced by 10, the performance is somewhat
dismal. More detail can be seen in the controller activity and recovery error singular value plots
(see figures 19 and 20. One can see from these the large (and perhaps unnecessary) increase in
activity for higher frequencies. This occurs even with the large values of € used.

Thus, again we seek a way of frequency weighting the error in the transposed system used to
generate the observer gains. A fair amount of trial and error led to using a corner of 0.2 rad/s on
all criteria for this system. This is probably much lower than what intuition would lead one to.
However, it is not very surprising in light of the experience with the frequency weighting on the
full order observer. However, the recovery errors are slightly better:

€ Recovery Error
0.5 0.7437
0.25 0.6915
0.125 0.6987
0.0625 0.7421

Still, we have relatively large values of ¢ compared to a weighted full order system, though, in line
with intuition, they are somewhat smaller than before. The recovery error for the € = 0.25 was best,
though the improvement does not get one near the residual errors for a shaped full state system.
In fact, it does not do better than an unweighted full order system. The corresponding eigenvalues
for this system are shown in Table 8. Singular value plots of the controller and the recovery error
are shown in figures 21 and 22.

Overall there seems to be a fairly high price to going to this reduced order observer structure.
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Max Singular Value

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ﬁ Poles | Damping | Freq (rad/secu
_7.83040 + 51.68651 0.150 52.2762
-0.38043 £+ 51.2638 0.180 52.1149
-12.4905 £ 41.0027: 0.291 42.8630
-6.11002 £ 37.2574 0.162 37.7550
-12.7108 £+ 25.2826i 0.449 28.2979
-8.72514 £+ 24.60111 0.334 26.1025
-245081 £+ 291104 0.993 24.6804
29245195 £ 2.27973i 0.996 24.6252
2371934 £ 19.609% 0.186 19.9595
-4.20761 + 19.536%9 0.211 19.9849
-19.3829 1.000 19.3829
-17.5160 1.000 17.5160
-6.90951 £ 4.9172% 0.815 8.48063
-5.98385 £+ 5.24203 0.752 7.95521
-6.51433 1.000 6.51433
-3.75254 £+ 4.6741% 0.626 5.99413
-5.79405 £ 0.39518i 0.998 5.80751
-4.65048 1.000 4.65048
-1.87052 £+ 1.37995 0.805 2.32446
-1.70573 £ 0.1090% 0.998 1.70922
-1.48464 £+ 0.60051i 0.927 1.60149

-4.26079e-3 £ 6.65864e-31 0.539 7.90518e-3

Table 7: Reduced Order Observer Recovery, 2 Integral Control

T

Results for Various Weighting Factors
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Figure 19: Recovery Error, Reduced Order Observer

23




Max Singular Value

Results for Various Weighting Factors
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Table 8: Reduced Order Observer Recovery, 2 Integral Control, Weighted

101

Figure 20: Controller Activity, Reduced Order Observer

100

101

Frequency (rad/s)
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r Poles | Damping | Freq (rad/sei’
-8.80979 £ 52.39601 0.166 53.1315
-9.38043 £ 51.2638 0.180 52.1149
-16.1812  + 35.102% 0.419 38.6528
S6.11002 £ 37.25741 0.162 37.7550
-14.0871 £ 24.071T1 0.505 27.8907
-8.72514 £+ 24.601L 0.334 26.1025
-24.7999 £ 0.550881 1.000 24.8060
-24.5081 £ 291104 0.993 24.6804
-20.5883 £ 1.42024i 0.998 20.6373
-2.25247 £ 20.278% 0.110 20.4037
-4.20761 £ 19.53691 0.211 19.9849
-19.3829 1.000 19.3829
-5.98385 £ 5.242031 0.752 7.95521
-6.54135 = 0.587331 0.996 6.56766
-6.51433 1.000 6.51433
-3.75254 x 4.674191 0.626 5.99413
-4.72891 1.000 4.72891
-4.65048 1.000 4.65048
-1.87052 £ 1.379951 0.805 2.32446
-1.70573 £ 0.10905i 0.998 1.70922
-1.48464 £ 0.60051i 0.927 1.60149

-4.26079e-3 £ 6.65864e-31 0.539 7.90518e-3
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Results for Various Weighting Factors
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Figure 21: Recovery Error, Shaped Reduced Order Observer
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Figure 22: Controller Activity, Shaped Reduced Order Observer
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5.3 Numerical LTR I: 8th Order Design

Aside from the structured observers, one can formulate a compensator with dynamics whose states
do not necessarily have any analogues with observer states. This direct optimization, run through
the program SANDY [1}, will optimize a controller design given a general structure for it. In this
case, we specify that it be 8th order in a series of 4 uncoupled 2nd order systems. The initial values
for the direct feedthrough matrix on this controller correspond to those corresponding columns of
the full state feedback matrix. The general control structure is as follows:

0 i 0 0 0 0 0 0
Ay A 0 0 0 0 0 0
0 0 0 1 0 0 0 0
A _ 0 0 A4s Ay 0 0 0 0
°© o o o o o0 1 0 0
0 0 0 0 Ags Aes 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 Ast Ass ]
[ By, Biy, Bir Bu Biy Bue 00 0 0]
By, Bay B2 Ba By, Baw 0 0 0 0
Bz, Bs; Bsr Bsw B Bi, 0 0 0 O
B. = By, Big Bay Baw Ba Bsw 0 0 0 0
< Bs, Bsq Bsr Bsu Bsu By, 0 0 0 0
Bsp Bsg Ber Bou Beu Bgow 0 0 0 0
B7, Bry B B Bz, Bz, 0 0 0 0
| Bs, Bs; Bsr Bsu Bg, Bsw 0 0 0 0]
L Cso1 Csy2 Csy3 Csod Cs,ys Csoe Clso7 Csos
C. = Csa Cs2 Cse3 Cs.4 Cs.s  Csee Cs.7 Cses
‘ Cs.i Cs,2 Csz Csa Cos Cse Coro Cogs
LC&rl Cs,2 Cs,s Cspa Cs,s Coe Csi,7 Cos,,8
F Ky Kiog K Koow Ksow Ksow Ksog Kaos Ky fs Ky o
Ks, Ksgq Kso Ko Koo Kow Kso Kso Kopo Bofo
De = Ksp Ksq Ko Ko Koo Ksw Koo Bsoo Ko Kofy
| Kip Koy Koor Kopu Koww Koww Kowo Koo Koy go B fo

Of course, the values marked with a 0 remain 0. The rest are allowed to optimize including the
state feedback gains noted in the D. matrix. This still amounts to a hefty number of parameters:
104 of them. It turns out that the feedthrough gains associated with states that turn out to be
directly measured (i.e., pitch, roll, etc.) have a significant impact on the recovery. Optimization
of these gains from their state feedback values provides for a significant amount of the recovery.
Thus, an analogy from the Ricatti-based solutions does not hold here—we are indeed changing the
supposed state feedback gain matrix K. The recovery error is 0.16374, which is the best recovery
of all systems. This is remarkable, considering the simple dynamics structure. Later on one will
see the limits to optimizing the direct feedthrough gains associated with just the observed terms.
This optimization perhaps could be improved upon as some analysis indicates that some further
improvement could be made, however some current algorithmic difficulties have prevented it. The
full state feedforward gains were used, as attempts to structure around their use did not seem 1o
work (see figure 23). It would have seemed that recovery error could have been improved by the
additional degrees of freedom, but the results seemed to indicate otherwise. This optimization
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[ Zero | Damping | Freq (HZ)J

-9.37520 £ 49.7002i 0.185 50.5767
-47.5601 1.000 47.5601
-6.58311 £ 37.764L 0.172 38.3336
-10.4636 + 27.2017 0.359 29.1448
-20.6436 £ 12.9692 0.847 24.3795
-23.4432 £ 2.81882: 0.993 23.6121
-3.74904 £ 19.5247h 0.189 19.8814
-11.2690 + 11.87101 0.688 16.3680
-15.9453 1.000 15.9453
-4.30385 + 6.159151 0.573 7.51387
-5.44168 £ 4.74486i 0.754 7.21980
-6.95416 + 1.785491 0.969 7.17971
-5.61014 1.000 5.61014
-2.05374 + 1.281641 0.848 2.42084
-1.63643 £ 0.73012 0.913 1.79192
-1.50904 £ 0.1238Li 0.997 1.51411
-4.25281e-003 £ 6.68477e-0031 0.537 7.92292e-003

Table 9: Poles of 8 State LTR Optimized Controller and Plant

chd
Stabilized
UH-60 Plant
_ Y,
. +
uf 6, 6,1, & w .
[Adi
U | UH-60 Plant |
Cls) Y,
OP’ q,u, v, 0,8

Figure 23: LTR for Output Feedback Controller C(s), No K;f (not used)
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proceeded with filtered disturbance inputs. The pitch and roll command disturbance inputs were
integrated, then passed through a filter with a time constant of 8 rad/sec. The vertical rate and
yaw rate command inputs were passed through a filter with a time constant of 4 rad/sec. These
filters were also applied in the subsequent SANDY based LTR optimizations.

There is no control penalty R on an LTR-based direct optimization. Since it stands to reason
that one is trying to recover a state feedback design, one needs to be able to freely vary the necessary
gains. Ricatti-based LTR theory indicates a need for some gains to go to infinity, Fortunately
most optimization schemes will detect an extreme lack of sensitivity of the cost function value
to a parameter change: the parameter will probably never move very far before the optimization
completes and terminates. Such has been the observed behavior here.

The disturbance response penalty affected the mean-squared values. Note that here, as opposed
to the closed form Ricatti solutions, one could minimize the actual error rather than a matrix
analogous to some error multiplier matrix M(s). The value for the response penalty matrix @, for
all direct LTR optimizations was:

Q = diag{0.1,0.05,2,1,1,2,1,0.2, 1,0.2}

The entries corresponded to the outputs {p, q, r, u, v, w, 9, 0, [0, and fo¢}.

5.4 Numerical LTR II: 4th Order Design

How much worse do the results get if the dynamics in the controller is lowered to 4th order” In a
word, not much worse—a recovery error of 0.17105. With the overall structure otherwise the same,
an interaction term between the pair of second order systems was allowed. This was intended to

r Zero I Damping | Freq (HZ)J
-464.184 1.000 464.184
-8.95655 = 51.11201 0.173 51.8908
-6.90773 £ 37.0939% 0.183 37.7316
-7.07229 £ 25.55061 0.267 26.5114
-24.1159 £ 2.943001 0.993 24.2948
-4.51612 £ 19.86621 0.222 20.3731
-20.2468 1.000 20.2468
-5.75452 £ 5.303071 0.735 7.82541
-2.82475 £ 5.709971 0.443 6.37048
-4.12753 £ 5.4257h 0.605 6.81724
-6.75926 1.000 6.75926
2212814 £ 2.733881 0.614 3.46455
-1.38437 &+ 1.13227i 0.774 1.78344
-1.72118 1.000 1.72118
-1.57803 £ 0.61632i 0.931 1.69411
-1.12528 1.000 1.12528

-4.2532e-003 £ 6.68453e-0031 0.537 7.92290e-003

Table 10: Poles of 4 State LTR Optimized Controller and Plant
make the dynamics a little richer to see if this would allow results nearly as good as those for the

8th order system. Because the size of this controller was minimal it was felt that some extra effort
needed to be made to see if this controller would achieve a level as good as any other system. These
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interaction terms—from the output of one second order system to the input of the other made the

design of the controller matrix look like:

0 1 0 0
Az Aga A 0

0 0 0 1
_Aﬂ 0 Agyz Agg

A, =

Since the cost (needing to optimize only 2 more variables) was low, this was done.

5.5 Numerical LTR III: Oth Order Design

Finally, one asks, is there a need for dynamics at all? What about feeding the output directly back?
This time the direct feedthough matrix is all there is, so one will begin with using the state feedback
gains and try to optimize it further. Analyzing results with just state feedback gains applied to
the measured output, we see what one can expect in the least. The recovery error is 6.1807, with
the accompanying suite of system eigenvalues as seen in table 11. While the performance is not
horrible, it does not keep the response within any sort of acceptable tolerance. The eigenvalues of
the system (Table 11) still indicate a well stabilized system. If one optimizes this D matrix via

ﬁ Zero l Damping | Freq (Hz) J
-0.49008 + 51.51461 0.181 52.3815
-5.48053 =+ 33.73561 0.160 34.1778
-7.55594 £ 24.5267T1 0.294 25.6642
-24.3200 £+ 2.76144 0.994 24 4763
-4.68312 £ 20.9348% 0.218 21.4522
-19.7090 1.000 19.7090
-10.4723 1.000 10.4723
-5.46663 + 5.15352i 0.728 7.51284
-3.40089 £+ 5.468781 0.528 6.44000
-2.20360 £ 2526141 0.657 3.35220
-1.80756 1.000 1.80756
-1.47456 £ 0.831931 0.871 1.69305
-1.34444 £ 0.50772 0.936 1.43711

-4.10885-003 £ 6.72672e-0031 0.521 1.25451e-003

Table 11: Poles of UH-60 Stabilized With Selected State Feedback Gains

SANDY, the recovery error improves dramatically to 1.2489. While this is still not as good as the
optimized LTR designs with dynamics, it 1s not so far off of a Luenberger LTR design. Technically
there are dynamics even with this design in the form of the integrators.

Looking at the plot of recovery error maximum singular values (figure 24), one will see that the
error at lower frequency is actually better for the Oth order controller. It is believed that this is
a function of how well the optimization did. Because there were many fewer parameters to move,
the relative strength of the optimization was probably better. Hopefully future work will improve
technique to allow opitmization to the same degree on the 8th and 4th order designs. Because of
the lack of internal dynamics, the error was worse than the 8th and 4th order designs for frequencies

in the 1-10 rad/sec range.
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Max Singular Value

1.4

1.2

0.8
0.6
0.4

0.2

r Zero | Damping I Freq (qu
-9.78679 £ 51.4210i 0.187 8.33081
-2.09033 = 35.181L 0.059 5.60912
-7.35643 =+ 2447921 0.288 4.06810
-24.2160 + 3.316151 0.991 3.89007
-5.59656 £ 19.3922i 0.277 3.21233
-20.0660 1.000 3.19360
-3.54972 £ 6.16242 0.499 1.13186
-5.86258 =+ 5.180501 0.749 1.24515
-6.71038 1.000 1.06799
-2.87716 £ 4.32472 0.554 0.82671
-1.15676 £ 0.779731 0.829 0.22202
-1.10283 £ 0.67672 0.852 0.20593
-1.70616 1.000 0.27154

-4.10885-003 + 6.72672e-003: 0.521 1.25451e-003

Table 12: Poles of 0 State LTR Optimized Controller and Plant

Results for Various Order Controllers

omm
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101 100 101
Frequency (rad/s)

Figure 24: Recovery Error, 8th, 4th and Oth Order
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Figure 25: Controller Activity, 8th, 4th and Oth Order

6 Direct Optimization for a 2 Integral State System Controller

What is the difference between LTR and a direct optimization? Formwise, the compensator struc-
ture is identical to that of the 4th order LTR design:

0 1 0 0
4 = Ay Az Az 0
- 0 0 0 1
| Ag 0 Ags Ay
[ By, Bi, Bi, Biw Biy B, 00 00
B — B2P qu Bar Bz, By, By, 0 0 0 0
© Bs, B3, Bs, Bs, B3, Bz, 0 0 0 0
| Byp Biy Bar Baw Ba By, 0 0 00
[ Cs1 Cspz Can Cga
Cc. = Csa Cs2 Csa Csa
‘ Csqa  Cs,a Csz Csa
L C'5tr1 Cl5tr2 C5tr3 Cécr‘i
[ I\,gop ]{a‘oq Ifgor 1\"501‘ 1&’501, Ii'gow 1&'509 I&'50¢ 1(60f0 I\Sofrb
Ksp Ks g Ks.r Ksou Ksoo Ko Ks.q Kso Kficfa K 5cfd)
Dc - I\’gsp I(5sq [&'557, [{55u 1{5311 Kgsu. Kgso ["bsgﬁ Kc‘;sff? [\'ésf(b
_k&rp Ksivg Nopr Kgou Koo Kspw Koo Koo ]\"5"{9 [&'5”]'@

The disturbance inputs, while filtered as before, will influence the dynamics in a significantly
different way. The feedforward matrix normally used is based on the full state feedback design—
these are the gains used to translate a vertical rate command into comimands on the actuators. With

this design, the yaw rate and vertical rate disturbances are summed into the signals going from the
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sensors to the controller itself—no “recovery” to a set of full state feedback gains is implied (see
figure 26). The pitch and roll commands, as before, go into the integrators (no direct feedthrough

UH-60 Plant
i 0 d)cmd

cmd

[Adt

tt

(p,q,u,v,&cﬁ

Figure 26: Direct Optimization for Output Feedback Controller C(s)

gains around these integrators). Because there is no direct comparison with the original state
feedback design feedforward, one cannot look at residuals between the two systems in a meaningful
way. The overall recovery process appears somewhat sensitive to the feedforward gains. One can,
however, look at the basic responses of this closed loop system and judge how well the optimization
went. In fact, because there exists a 4th order LTR design with the same structure a comparison
to it will be useful.

The largest source of difficulty was in choosing the relative weighting of control versus criterion.
Classically, one worked for the fastest adequate response time versus having unreasonable gains or
a large overshoot. The weighting matrices had values as shown in tables 13 and 14. Considering

Q for State | Q for Optimized . Factor
Feedback | Output Feedback Weighted
1 10 Blend of: 0.25¢ + 0 + [ 6 dt
0.1 6 Blend of: 0.2p+ ¢ + [ ¢ dt
1.6 16 Yaw Rate r
2 30 Vertical Rate w

Table 13: Diagonal Values of Q and Corresponding Factors
how this design had some high frequency components and overshoot, the difference in weights from

the LQ to the direct design is significant. The resulting eigenvalues are shown in Table 15. From
previous experience, one can see that the eigenvalues do not say much by themselves. Looking at
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R for State | R for Optimized Factor
Feedback | Output Feedback Weighted
10 04 Collective 6y
1 1 Sine 65
1 1 Cosine 6,
1 1 Tail Rotor érp

Table 14: Diagonal Values of R and Corresponding Factors

| Zero I Damping | Freq (Hz) J
-470.046 1.000 470.046
-115.173 1.000 115.173
-9.39606 £ 51.428L 0.180 52.2794
-2.85548 £ 35.6182i 0.080 35.7325
-30.9068 1.000 30.9068
-8.59788 £ 26.2384 0.311 27.6112
-24.2882 £ 3.56569i 0.989 245486
-5.44497 £+ 19.92051 0.264 20.6512
-17.0312 1.000 17.0312
-1.23462 £+ 8.689751 0.141 8.77702
-3.91763 £ 6.1271T 0.539 7.27255
-2.88111 £ 3.14284 0.676 4.26359
-3.07029 £ 137917 0.912 3.36583
-3.74960 1.000 3.74960
-1.34781 £ 0.580551 0.918 1.46753
-1.46438 1.000 1.46438
-0.33784 1.000 0.33784

-3.96107e-003 £ 6.69608e-0031 0.509 7.77995e-003

Table 15: Poles of 4 State Direct Optimized Controller and Plant
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Figure 27: Controller Activity, non-LTR Optimization

the controller activity (see Figure 27), one can see that it starts out with a fairly large gain at low
frequencies and increases a modest relatzve amount as one goes up in frequency. Considering the
command response plots (figures 28 to 31, this extra controller activity is apparent in the faster
response times (and overshoots) for pitch and roll along with the appearance of high frequency
components in the responses. Other than this, there seem to be other differences with the LTR
design, in that the direct optimization performed better in keeping the yaw rate and up rate near
zero in the pitch and roll commands, as well as mitigating actuator use in the yaw rate and up rate
commands. Note that while the rise time of the direct optimization response for the pitch and roll
commands was better, the delay time was the same.

The Bode plots do not add much to the insights already learned aside from reinforcing the
fact that the rolloff is lower on the direct design. Because the phase also moves more slowly the

difference in robustness may only be slight.

7 Conclusions

Though one could directly optimize a controller, the LTR procedure 1s in itself useful combined with
the numerical optimization as the process derives a best case controller (versus full-state feedback)
as well as a feel for a particular plant model behavior. Though @ and R will almost always be dealt
with as diagonal matrices, developing the weightings for a proper controller design is one of the
more difficult parts of the design—this development is sped up considerably given the availability
of a full state design with which to explore the various effects.

Recovering to a design (though it be to an unrealizable full state one in general) is well defined
within a numerical LTR. Though the weighting matrix on the controls is zero, the gains do not
tend to blow up (an optimization process would be hard pressed to do this). Having a full state
design to recover to (as opposed to a direct optimization to the best possible controller) represents
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Figure 29: LTR and Direct Comparison
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Figure 30: LTR and Direct Comparison
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Figure 32: Pitch/Pitch Command Bode Plot, LTR and Direct
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Figure 33: Roll/Roll Command Bode Plot, LTR and Direct
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METHOD ERROR
Full State Observer (Unweighted) 0.4359
Full State Observer (Weighted) 0.2746
Reduced Order Observer (Unweighted) | 0.9007
Reduced Order Observer (Weighted) 0.6915

8th Order Numerical LTR 0.1637
4th Order Numerical LTR 0.1711
0th Order Numerical LTR 1.2489

Table 16: Overall List of Recovery Error versus Method

a continual design check—a sort of quality control. This is necessary as one may need to restart
the optimizer to avoid some local minimum. In addition the LTR numerical solution may provide
a good starting point for the direct optimization.

Using the appropriate entries of the full state feedback gain matrix for the feedforward from the
yaw rate command and up rate command to the actuators may be restrictive enough to affect the
resulting controller. It appears that LTR does not work if these commands were inserted between
the sensor output and the controller input as in the direct optimization (see Figure 26). Fortunately
this is not an issue with the pitch and roll commands as the feed into the error integrators is the
same in both LTR and the direct case.

What would be the advantages and disadvantages of integral control on r and w? The process
of recovery may actually be made easier; however, the full state feedback design would probably
not have as good a response time as with a non-integral design. This sort of tradeoff may have to
be made in making the decision as to what kind of mission one intends with this helicopter.

Other future exploration should include a test of the robustness of this controller to deviations
about the hover flight condition. Ideally the gain scheduling from flight condition to flight condition
should result in a fairly even performance across the envelope—especially at a midpoint between
flight conditions.

Further improvements to the numerical algorithms to combine robustness to defective matrices
and the speed of the diagonal algorithms is also pending. Routine use of a robust form of optimiza-
tion gradient calculation may improve the numerical results seen in this paper. The LTR process
tries to recover a state feedback design with an output feedback design—therefore it is inevitable
that various eigenvalues, one set from the closed loop state feedback design, one set from the re-
covery design, will overlap. Chances are this overlap will result in a defective set of eigenvalues.
Currently this roadblock is overcome only by going to the much slower robust form.
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